Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.661
Filtrar
1.
Zootaxa ; 5402(1): 1-99, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38480458

RESUMO

This checklist aims to update the list of the inland fish fauna of Iran including newly described species and also clarify the status of some taxa including some gobies and catfishes which were ignored in the checklist provided by Eagderi et al. (2022). The checklist is arranged by classes, orders, families, and species. In total, 300 species, belonging to 110 genera, 38 families, 23 orders, and three classes were recognized from Iranian basins, with the presence of 11 reported species that need confirmation by specimens. Additional notes about the taxonomy of several taxa are provided in the discussion section.


Assuntos
Peixes-Gato , Lampreias , Humanos , Animais , Irã (Geográfico) , Peixes , Água Doce
2.
Fish Shellfish Immunol ; 146: 109413, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311092

RESUMO

Liver-expressed antimicrobial peptide 2 (LEAP2) is a member of the antimicrobial peptides family and plays a key role in the innate immune system of organisms. LEAP2 orthologs have been identified from a variety of fish species, however, its function in primitive vertebrates has not been clarified. In this study, we cloned and identified Lc-LEAP2 from the primitive jawless vertebrate lamprey (Lethenteron camtschaticum) which includes a 25 amino acids signal peptide and a mature peptide of 47 amino acids. Although sequence similarity was low compared to other species, the mature Lc-LEAP2 possesses four conserved cysteine residues, forming a core structure with two disulfide bonds between the cysteine residues in the relative 1-3 (Cys 58 and Cys 69) and 2-4 (Cys 64 and Cys 74) positions. Lc-LEAP2 was most abundantly expressed in the muscle, supraneural body and buccal gland of lamprey, and was significantly upregulated during LPS and Poly I:C stimulations. The mature peptide was synthesized and characterized for its antibacterial activity against different bacteria. Lc-LEAP2 possessed inhibition of a wide range of bacteria with a dose-dependence, disrupting the integrity of bacterial cell membranes and binding to bacterial genomic DNA, although its inhibitory function is weak compared to that of higher vertebrates. These data suggest that Lc-LEAP2 plays an important role in the innate immunity of lamprey and is of great value in improving resistance to pathogens. In addition, the antimicrobial mechanism of LEAP2 has been highly conserved since its emergence in primitive vertebrates.


Assuntos
Hepcidinas , Lampreias , Animais , Lampreias/genética , Lampreias/metabolismo , Hepcidinas/genética , Sequência de Aminoácidos , Cisteína , Proteínas de Peixes/química , Vertebrados/metabolismo , Peptídeos/genética , Antibacterianos/farmacologia , Filogenia
3.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397089

RESUMO

Lamprey homologues of the classic embryonic inducer Noggin are similar in expression pattern and functional properties to Noggin homologues of jawed vertebrates. All noggin genes of vertebrates apparently originated from a single ancestral gene as a result of genome duplications. nogginA, nogginB and nogginC of lampreys, like noggin1 and noggin2 of gnathostomes, demonstrate the ability to induce complete secondary axes with forebrain and eye structures when overexpressed in Xenopus laevis embryos. According to current views, this finding indicates the ability of lamprey Noggin proteins to suppress the activity of the BMP, Nodal/Activin and Wnt/beta-catenin signaling pathways, as shown for Noggin proteins of gnathostomes. In this work, by analogy with experiments in Xenopus embryos, we attempted to induce secondary axes in the European river lamprey Lampetra fluviatilis by injecting noggin mRNAs into lamprey eggs in vivo. Surprisingly, unlike what occurs in amphibians, secondary axis induction in the lampreys either by noggin mRNAs or by chordin and cerberus mRNAs, the inductive properties of which have been described, was not observed. Only wnt8a mRNA demonstrated the ability to induce secondary axes in the lampreys. Such results may indicate that the mechanism of axial specification in lampreys, which represent jawless vertebrates, may differ in detail from that in the jawed clade.


Assuntos
Lampreias , Prosencéfalo , Animais , Lampreias/genética , Xenopus laevis/genética , Via de Sinalização Wnt , Genoma , Filogenia
5.
Nature ; 627(8005): 811-820, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262590

RESUMO

As the only surviving lineages of jawless fishes, hagfishes and lampreys provide a crucial window into early vertebrate evolution1-3. Here we investigate the complex history, timing and functional role of genome-wide duplications4-7 and programmed DNA elimination8,9 in vertebrates in the light of a chromosome-scale genome sequence for the brown hagfish Eptatretus atami. Combining evidence from syntenic and phylogenetic analyses, we establish a comprehensive picture of vertebrate genome evolution, including an auto-tetraploidization (1RV) that predates the early Cambrian cyclostome-gnathostome split, followed by a mid-late Cambrian allo-tetraploidization (2RJV) in gnathostomes and a prolonged Cambrian-Ordovician hexaploidization (2RCY) in cyclostomes. Subsequently, hagfishes underwent extensive genomic changes, with chromosomal fusions accompanied by the loss of genes that are essential for organ systems (for example, genes involved in the development of eyes and in the proliferation of osteoclasts); these changes account, in part, for the simplification of the hagfish body plan1,2. Finally, we characterize programmed DNA elimination in hagfish, identifying protein-coding genes and repetitive elements that are deleted from somatic cell lineages during early development. The elimination of these germline-specific genes provides a mechanism for resolving genetic conflict between soma and germline by repressing germline and pluripotency functions, paralleling findings in lampreys10,11. Reconstruction of the early genomic history of vertebrates provides a framework for further investigations of the evolution of cyclostomes and jawed vertebrates.


Assuntos
Evolução Molecular , Feiticeiras (Peixe) , Vertebrados , Animais , Feiticeiras (Peixe)/anatomia & histologia , Feiticeiras (Peixe)/citologia , Feiticeiras (Peixe)/embriologia , Feiticeiras (Peixe)/genética , Lampreias/genética , Filogenia , Vertebrados/genética , Sintenia , Poliploidia , Linhagem da Célula
6.
Nat Ecol Evol ; 8(3): 519-535, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216617

RESUMO

Polyploidy or whole-genome duplication (WGD) is a major event that drastically reshapes genome architecture and is often assumed to be causally associated with organismal innovations and radiations. The 2R hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution. However, the timing of the 2R event relative to the divergence of gnathostomes (jawed vertebrates) and cyclostomes (jawless hagfishes and lampreys) is unresolved and whether these WGD events underlie vertebrate phenotypic diversification remains elusive. Here we present the genome of the inshore hagfish, Eptatretus burgeri. Through comparative analysis with lamprey and gnathostome genomes, we reconstruct the early events in cyclostome genome evolution, leveraging insights into the ancestral vertebrate genome. Genome-wide synteny and phylogenetic analyses support a scenario in which 1R occurred in the vertebrate stem-lineage during the early Cambrian, and 2R occurred in the gnathostome stem-lineage, maximally in the late Cambrian-earliest Ordovician, after its divergence from cyclostomes. We find that the genome of stem-cyclostomes experienced an additional independent genome triplication. Functional genomic and morphospace analyses demonstrate that WGD events generally contribute to developmental evolution with similar changes in the regulatory genome of both vertebrate groups. However, appreciable morphological diversification occurred only in the gnathostome but not in the cyclostome lineage, calling into question the general expectation that WGDs lead to leaps of bodyplan complexity.


Assuntos
Feiticeiras (Peixe) , Animais , Filogenia , Feiticeiras (Peixe)/genética , Duplicação Gênica , Vertebrados/genética , Genoma , Lampreias/genética
7.
PLoS One ; 19(1): e0286535, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38206962

RESUMO

Stable isotope ratios in organisms can be used to estimate dietary source contributions, but lipids must first be accounted for to interpret values meaningfully. Lipids are depleted in heavy isotopes because during lipid synthesis light isotopes of carbon (12C) and hydrogen (1H) are preferentially incorporated. Prior work in larval lampreys has noted unusual lipid effects, which suggest lipids are enriched in the heavy isotope of carbon (13C), but still depleted in the heavy isotope of hydrogen (deuterium; 2H); nitrogen, a relatively rare element in lipids, has not been identified as being as sensitive to lipid content. Our objective was to determine if stable isotope ratios of hydrogen, carbon, and nitrogen behaved as expected in larval lampreys, or if their lipids presented different isotopic behavior. The δ2H, δ13C, and δ15N were measured from the muscle of four lamprey species before and after lipid extraction. In addition, muscle of least brook lamprey (Lampetra aepyptera) was collected every three months for a year from two streams in Maryland. Isotopic ratios were measured in bulk and lipid-extracted muscles, as well as in extracted lipids. The difference between muscle samples before and after lipid extraction (Δδ2H, Δδ13C, Δδ15N) was positively related to lipid proxy (%H or C:N ratio) and were fit best by linear models for Δδ2H and Δδ15N, and by a non-linear model for Δδ13C. The difference between lipid-extracted muscle and lipid δ13C (ΔMLδ13C) was negative and varied between months (ANOVA, F3,53 = 5.05, p < 0.005). Our work suggests that while lipids are often depleted in 13C, this is not a universal rule; however, the depletion of 2H in lipid synthesis appears broadly true.


Assuntos
Carbono , Lampreias , Animais , Isótopos de Nitrogênio , Isótopos de Carbono , Larva , Hidrogênio , Lipídeos , Nitrogênio , Músculos
8.
Dev Dyn ; 253(3): 283-295, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37732630

RESUMO

BACKGROUND: Although vertebrae are the defining character of vertebrates, they are found only in rudimentary form in extant agnathans. In addition, the vertebrae of agnathans possess several unique features, such as elastin-like molecules as the main matrix component and late (post-metamorphosis) differentiation of lamprey vertebrae. In this study, by tracing the developmental process of vertebrae in lamprey, we examined the homology of vertebrae between lampreys and gnathostomes. RESULTS: We found that the lamprey somite is first subdivided mediolaterally, with myotome cells differentiating medially and non-myotome cells emerging laterally. Subsequently, collagen-positive non-myotome cells surround the myotome. This pattern of somitogenesis is rather similar to that in amphioxi and sheds doubt on the presence of a sclerotome, in terms of mesenchyme cells induced by a signal from the notochord, in lamprey. Further tracing of non-myotome cell development revealed that fin cartilage develops in ammocoete larvae approximately 35 mm in body length. The development of the fin cartilage occurs much earlier than that of the vertebra whose development proceeds during metamorphosis. CONCLUSION: We propose that the homology of vertebrae between agnathans and gnathostomes should be discussed carefully, because the developmental process of the lamprey vertebra is different from that of gnathostomes.


Assuntos
Sistema Musculoesquelético , Animais , Coluna Vertebral , Esqueleto , Lampreias , Vertebrados
9.
Mol Biol Cell ; 35(1): ar10, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37991902

RESUMO

α-Synuclein is a presynaptic protein that regulates synaptic vesicle (SV) trafficking. In Parkinson's disease (PD) and dementia with Lewy bodies (DLB), α-synuclein aberrantly accumulates throughout neurons, including at synapses. During neuronal activity, α-synuclein is reversibly phosphorylated at serine 129 (pS129). While pS129 comprises ∼4% of total α-synuclein under physiological conditions, it dramatically increases in PD and DLB brains. The impacts of excess pS129 on synaptic function are currently unknown. We show here that compared with wild-type (WT) α-synuclein, pS129 exhibits increased binding and oligomerization on synaptic membranes and enhanced vesicle "microclustering" in vitro. Moreover, when acutely injected into lamprey reticulospinal axons, excess pS129 α-synuclein robustly localized to synapses and disrupted SV trafficking in an activity-dependent manner, as assessed by ultrastructural analysis. Specifically, pS129 caused a declustering and dispersion of SVs away from the synaptic vicinity, leading to a significant loss of total synaptic membrane. Live imaging further revealed altered SV cycling, as well as microclusters of recently endocytosed SVs moving away from synapses. Thus, excess pS129 caused an activity-dependent inhibition of SV trafficking via altered vesicle clustering/reclustering. This work suggests that accumulation of pS129 at synapses in diseases like PD and DLB could have profound effects on SV dynamics.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Fosfosserina/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Lampreias
10.
Fish Shellfish Immunol ; 145: 109323, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38147915

RESUMO

Heat shock proteins (HSPs) are molecular chaperones that ubiquitously exist in various organisms and play essential roles in protein folding, transport, and expression. While most HSPs are highly conserved across species, a few HSPs are evolutionarily distinct in some species and may have unique functions. To explore the evolutionary history of the vertebrate HSP family, we identify members of the HSP family at the genome-wide level in lampreys (Lethenteron reissneri), a living representative of jawless vertebrates diverged from jawed vertebrates over 500 million years ago. The phylogenetic analysis reveals that the lamprey HSP family contains HSP90a1, HSP90a2, HSC70, HSP60, HSP30, HSP27, HSP17, and HSP10, which have a primitive status in the molecular evolution of vertebrate HSPs. Transcriptome analysis reveals the expression distribution of members of the HSP family in various tissues of lampreys. It is shown that HSP30, normally found in birds, amphibians, and fish, is also present in lampreys, with remarkable expansion of HSP30 gene copies in the lamprey genome. The transcription of HSP30 is significantly induced in leukocytes and heart of lampreys during various pathogens or poly(I:C) stimulation, indicating that HSP30 may be involved in the immune defense of lampreys in response to bacterial or viral infection. Immunohistochemistry demonstrates significantly increased HSP30 expression in subcutaneous muscle tissue after skin injury in lamprey models of wound repair. Furthermore, transcriptome analysis shows that ectopic expression of HSP30 in 3T3-L1 fibroblasts affect the expression of genes related to the PI3K-AKT signaling pathway, suggesting that HSP30 could serves as a negative regulator of fibrosis. These results indicate that HSP30 may play a critical role in facilitating the process of lamprey skin repair following injury. This study provides new insights into the origin and evolution of the HSP gene family in vertebrates and offers valuable clues to reveal the important role of HSP30 in immune defense and wound healing of lampreys.


Assuntos
Lampreias , Fosfatidilinositol 3-Quinases , Animais , Lampreias/genética , Filogenia , Fosfatidilinositol 3-Quinases/genética , Proteínas de Choque Térmico/genética , Evolução Molecular , Imunidade , Cicatrização
11.
Nat Commun ; 14(1): 6652, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907522

RESUMO

Lampreys, one of two living lineages of jawless vertebrates, are always intriguing for their feeding behavior via the toothed suctorial disc and life cycle comprising the ammocoete, metamorphic, and adult stages. However, they left a meager fossil record, and their evolutionary history remains elusive. Here we report two superbly preserved large lampreys from the Middle-Late Jurassic Yanliao Biota of North China and update the interpretations of the evolution of the feeding apparatus, the life cycle, and the historic biogeography of the group. These fossil lampreys' extensively toothed feeding apparatus differs radically from that of their Paleozoic kin but surprisingly resembles the Southern Hemisphere pouched lamprey, which foreshadows an ancestral flesh-eating habit for modern lampreys. Based on the revised petromyzontiform timetree, we argued that modern lampreys' three-staged life cycle might not be established until the Jurassic when they evolved enhanced feeding structures, increased body size and encountered more penetrable host groups. Our study also places modern lampreys' origin in the Southern Hemisphere of the Late Cretaceous, followed by an early Cenozoic anti-tropical disjunction in distribution, hence challenging the conventional wisdom of their biogeographical pattern arising from a post-Cretaceous origin in the Northern Hemisphere or the Pangean fragmentation in the Early Mesozoic.


Assuntos
Lampreias , Comportamento Predatório , Animais , Estágios do Ciclo de Vida , Vertebrados , Fósseis , Filogenia
12.
Mol Phylogenet Evol ; 189: 107942, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37804959

RESUMO

The history of lamprey evolution has been contentious due to limited morphological differentiation and limited genetic data. Available data has produced inconsistent results, including in the relationship among northern and southern species and the monophyly of putative clades. Here we use whole genome sequence data sourced from a public database to identify orthologs for 11 lamprey species from across the globe and build phylogenies. The phylogeny showed a clear separation between northern and southern lamprey species, which contrasts with some prior work. We also find that the phylogenetic relationships of our samples of two genera, Lethenteron and Eudontomyzon, deviate from the taxonomic classification of these species, suggesting that they require reclassification.


Assuntos
Genoma , Lampreias , Animais , Filogenia , Lampreias/genética , Genoma/genética
13.
Cell Tissue Res ; 394(3): 431-439, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37851111

RESUMO

A subset of gustatory cells are serotonin immunoreactive (ir) in the mammalian taste bud. In the taste bud of lamprey, elongated gustatory-like cells are also serotonin-ir. In contrast, flattened serotonin-ir cells are located only in the basal region of the taste buds in the teleosts and amphibians. These serotonin-ir cells are termed as basal cells. To evaluate the evolution and diversity of serotonergic cells in the taste bud of amniote animals, we explored the distribution and morphology of serotonin-ir cells in the taste buds of ancestral actinopterygian fish (spotted gar, sturgeon, Polypterus senegalus) and elasmobranch (stingray). In all examined animals, the taste buds contained serotonin-ir cells in their basal part. The number of serotonin-ir basal cells in each taste bud was different between these fish species. They were highest in the stingray and decreased in the order of the Polypterus, sturgeon, and gar. While serotonin immunoreactivity was observed only in the basal cells in the taste buds of the ancestral actinopterygian fish, some elongated cells were also serotonin-ir in addition to the basal cells in the stingray taste buds. mRNA of tryptophan hydroxylase 1 (tph1), a rate-limiting enzyme of the serotonin synthesis, is expressed in both the elongated and basal cells of stingray taste buds, indicating that these cells synthesize the serotonin by themselves. These results suggest that the serotonin-ir basal cells arose from the ancestor of the cartilaginous fish, and serotonin-ir cells in the elasmobranch taste bud exhibit an intermediate aspect between the lamprey and actinopterygian fish.


Assuntos
Elasmobrânquios , Papilas Gustativas , Animais , Serotonina , Imuno-Histoquímica , Peixes , Lampreias , Mamíferos
14.
J Neurophysiol ; 130(5): 1265-1281, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37820016

RESUMO

After rostral spinal cord injury (SCI) of lampreys, the descending axons of injured (axotomized) reticulospinal (RS) neurons regenerate and locomotor function gradually recovers. Our previous studies indicated that relative to uninjured lamprey RS neurons, injured RS neurons display several dramatic changes in their biophysical properties, called the "injury phenotype." In the present study, at the onset of applied depolarizing current pulses for membrane potentials below as well as above threshold for action potentials (APs), injured RS neurons displayed a transient depolarization consisting of an initial depolarizing component followed by a delayed repolarizing component. In contrast, for uninjured neurons the transient depolarization was mostly only evident at suprathreshold voltages when APs were blocked. For injured RS neurons, the delayed repolarizing component resisted depolarization to threshold and made these neurons less excitable than uninjured RS neurons. After block of voltage-gated sodium and calcium channels for injured RS neurons, the transient depolarization was still present. After a further block of voltage-gated potassium channels, the delayed repolarizing component was abolished or significantly reduced, with little or no effect on the initial depolarizing component. Voltage-clamp experiments indicated that the delayed repolarizing component was due to a noninactivating outward-rectifying potassium channel whose conductance (gK) was significantly larger for injured RS neurons compared to that for uninjured neurons. Thus, SCI results in an increase in gK and other changes in the biophysical properties of injured lamprey RS neurons that lead to a reduction in excitability, which is proposed to create an intracellular environment that supports axonal regeneration.NEW & NOTEWORTHY After spinal cord injury (SCI), lamprey reticulospinal (RS) neurons responded to subthreshold depolarizing current pulses with a transient depolarization, which included an initial depolarization that was due to passive channels followed by a delayed repolarization that was mediated by voltage-gated potassium channels. The conductance of these channels (gK) was significantly increased for RS neurons after SCI and contributed to a reduction in excitability, which is expected to provide supportive conditions for subsequent axonal regeneration.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Traumatismos da Medula Espinal , Animais , Canais de Potássio/fisiologia , Neurônios/fisiologia , Potenciais da Membrana/fisiologia , Lampreias , Medula Espinal
15.
Curr Opin Neurobiol ; 83: 102785, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37774481

RESUMO

The role of dopamine in the control of movement is traditionally associated with ascending projections to the basal ganglia. However, more recently descending dopaminergic pathways projecting to downstream brainstem motor circuits were discovered. In lampreys, salamanders, and rodents, these include projections to the downstream Mesencephalic Locomotor Region (MLR), a brainstem region controlling locomotion. Such descending dopaminergic projections could prime brainstem networks controlling movement. Other descending dopaminergic projections have been shown to reach reticulospinal cells involved in the control of locomotion. In addition, dopamine directly modulates the activity of interneurons and motoneurons. Beyond locomotion, dopaminergic inputs modulate visuomotor transformations within the optic tectum (mammalian superior colliculus). Loss of descending dopaminergic inputs will likely contribute to pathological conditions such as in Parkinson's disease.


Assuntos
Tronco Encefálico , Dopamina , Animais , Locomoção/fisiologia , Lampreias/fisiologia , Colículos Superiores , Mamíferos
16.
Nature ; 621(7980): 782-787, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37730987

RESUMO

The neurocranium is an integral part of the vertebrate head, itself a major evolutionary innovation1,2. However, its early history remains poorly understood, with great dissimilarity in form between the two living vertebrate groups: gnathostomes (jawed vertebrates) and cyclostomes (hagfishes and lampreys)2,3. The 100 Myr gap separating the Cambrian appearance of vertebrates4-6 from the earliest three-dimensionally preserved vertebrate neurocrania7 further obscures the origins of modern states. Here we use computed tomography to describe the cranial anatomy of an Ordovician stem-group gnathostome: Eriptychius americanus from the Harding Sandstone of Colorado, USA8. A fossilized head of Eriptychius preserves a symmetrical set of cartilages that we interpret as the preorbital neurocranium, enclosing the fronts of laterally placed orbits, terminally located mouth, olfactory bulbs and pineal organ. This suggests that, in the earliest gnathostomes, the neurocranium filled out the space between the dermal skeleton and brain, like in galeaspids, osteostracans and placoderms and unlike in cyclostomes2. However, these cartilages are not fused into a single neurocranial unit, suggesting that this is a derived gnathostome trait. Eriptychius fills a major temporal and phylogenetic gap in our understanding of the evolution of the gnathostome head, revealing a neurocranium with an anatomy unlike that of any previously described vertebrate.


Assuntos
Fósseis , Filogenia , Crânio , Vertebrados , Animais , Feiticeiras (Peixe)/anatomia & histologia , Imageamento Tridimensional , Lampreias/anatomia & histologia , Boca , Bulbo Olfatório , Glândula Pineal , Crânio/anatomia & histologia , Tomógrafos Computadorizados , Vertebrados/anatomia & histologia , Vertebrados/classificação , Colorado , Cartilagem/anatomia & histologia
17.
Sci Rep ; 13(1): 15032, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699939

RESUMO

Anguilliform swimmers, like eels or lampreys, are highly efficient swimmers. Key to understanding their performances is the relationship between the body's kinematics and resulting swimming speed and efficiency. But, we cannot prescribe kinematics to living fish, and it is challenging to measure their power consumption. Here, we characterise the swimming speed and cost of transport of a free-swimming undulatory bio-inspired robot as we vary its kinematic parameters, including joint amplitude, body wavelength, and frequency. We identify a trade-off between speed and efficiency. Speed, in terms of stride length, increases for increasing maximum tail angle, described by the newly proposed specific tail amplitude and reaches a maximum value around the specific tail amplitude of unity. Efficiency, in terms of the cost of transport, is affected by the whole-body motion. Cost of transport decreases for increasing travelling wave-like kinematics, and lower specific tail amplitudes. Our results suggest that live eels tend to choose efficiency over speed and provide insights into the key characteristics affecting undulatory swimming performance.


Assuntos
Robótica , Animais , Natação , Enguias , Lampreias , Movimento (Física)
18.
Dev Biol ; 504: 12-24, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37696353

RESUMO

The Estrogen Related Receptor (ERR) nuclear hormone receptor genes have a wide diversity of roles in vertebrate development. In embryos, ERR genes are expressed in several tissues, including the central and peripheral nervous systems. Here we seek to establish the evolutionary history of chordate ERR genes, their expression and their regulation. We examine ERR expression in mollusc, amphioxus and sea squirt embryos, finding the single ERR orthologue is expressed in the nervous system in all three, with muscle expression also found in the two chordates. We show that most jawed vertebrates and lampreys have four ERR paralogues, and that vertebrate ERR genes were ancestrally linked to Estrogen Receptor genes. One of the lamprey paralogues shares conserved expression domains with jawed vertebrate ERRγ in the embryonic vestibuloacoustic ganglion, eye, brain and spinal cord. Hypothesising that conserved expression derives from conserved regulation, we identify a suite of pan-vertebrate conserved non-coding sequences in ERR introns. We use transgenesis in lamprey and chicken embryos to show that these sequences are regulatory and drive reporter gene expression in the nervous system. Our data suggest an ancient association between ERR and the nervous system, including expression in cells associated with photosensation and mechanosensation. This includes the origin in the vertebrate common ancestor of a suite of regulatory elements in the 3' introns that drove nervous system expression and have been conserved from this point onwards.


Assuntos
Cordados , Embrião de Galinha , Animais , Cordados/genética , Evolução Molecular , Vertebrados , Sequência Conservada , Lampreias/genética , Lampreias/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Filogenia
19.
Dev Comp Immunol ; 148: 104903, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37541459

RESUMO

Information on the prostaglandin pathway in lampreys is limited. Here, five genes related to the prostaglandin pathway from synthesis to inactivation, namely, phospholipase A2, cyclooxygenase-2, prostaglandin E synthase 3, prostaglandin D synthase, and 15-hydroxyprostaglandin dehydrogenase [NAD(+)], were screened and cloned from the lamprey, Lethenteron camtschaticum. Bioinformatic analysis showed that these lamprey genes are relatively conserved with teleost genes in domains, motifs, gene structure and 3D structure. Analysis of expression distribution of the genes in lamprey tissues revealed that a complete prostaglandin pathway from synthesis to inactivation exists in the oral gland of lamprey, especially the key gene of prostaglandin synthesis cyclooxygenase-2, which was highly expressed in the oral gland. Furthermore, cyclooxygenase-2 expression increased after LPS and Poly I:C stimulations. Using our established spatial metabolite database LampreyDB, six prostaglandin-related metabolites were screened from the oral gland of lamprey, four of which were highly expressed in the oral gland. This study provides new insights into prostaglandin synthesis and inactivation pathways in lamprey, thereby improving our understanding of the origin and evolution of the prostaglandin pathway and contributing to the recognition of lamprey regulatory mechanisms in development and immunity.


Assuntos
Lampreias , Vertebrados , Animais , Lampreias/genética , Ciclo-Oxigenase 2/metabolismo , Filogenia
20.
Commun Biol ; 6(1): 881, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640823

RESUMO

Lampreys are blood-sucking vampires in marine environments. From a survival perspective, it is expected that the lamprey buccal gland exhibits a repository of pharmacologically active components to modulate the host's homeostasis, inflammatory and immune responses. By analyzing the metabolic profiles of 14 different lamprey tissues, we show that two groups of metabolites in the buccal gland of lampreys, prostaglandins and the kynurenine pathway metabolites, can be injected into the host fish to assist lamprey blood feeding. Prostaglandins are well-known blood-sucking-associated metabolites that act as vasodilators and anticoagulants to maintain vascular homeostasis and are involved in inflammatory responses. The vasomotor reactivity test on catfish aortic ring showed that kynurenine can also relax the blood vessels of the host fish, thus improving the blood flow of the host fish at the bite site. Finally, a lamprey spatial metabolomics database ( https://www.lampreydb.com ) was constructed to assist studies using lampreys as animal model.


Assuntos
Cinurenina , Lampreias , Animais , Metabolômica , Prostaglandinas , Anticoagulantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...